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Abstract—Tricarbonyl(3-ethoxy-4-phenyl-1-oxa-1,2,4-pentatrienone) iron(0) reacts with a variety of electron deficient and electron
rich alkynes to produce catechol monoethyl ethers in moderate to good yield. Steric hindrance of the alkyne often exerts a stronger
influence than electronic factors in determining the product distribution. The reaction with several alkyl, silyl, and aryl alkynes pro-
duced alkyne trimers as the major products.
� 2005 Elsevier Ltd. All rights reserved.
Vinylketenes (1-oxa-1,2,4-pentatrienes or 1,4-butadien-
1-ones) are extremely reactive, rarely isolated com-
pounds that have emerged as an important class of
reagents in organic synthesis.1 Their transition metal
derivatives, which are sometimes isolable, constitute an
important class of organometallic compounds that have
been demonstrated to undergo a number of mechanisti-
cally and synthetically interesting transformations.2 Par-
ticularly appealing is the notion that highly substituted
phenols may be accessed by reaction of these complexes
with alkynes. This represents an important complement
to the Dötz benzannulation reaction that produces
hydroquinone derivatives from chromium carbene com-
plexes upon reaction with alkynes.3 (Scheme 1) The pro-
posed mechanism for this valuable synthetic reaction
involves the intermediacy of a vinylketene chromium
complex that undergoes an electrocyclic ring closure to
0040-4039/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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Scheme 1. Benzannulation reaction of chromium carbene complexes and alk
give the p-alkoxyphenol. Merlic developed an important
variation using photochemically generated dienylketene
complexes that produce o-alkoxyphenols and catechol
structures.4 Wulff reported a phenol synthesis upon
reaction of pentyne with an isolated chromium(0) vinyl-
ketene complex.5 The electron rich alkyne, N,N-di-
ethylaminopropyne produced the cyclobutene derived
from a [2+2] cycloaddition reaction with the vinyl-
ketene.5 Liebeskind reported the first general synthesis
of phenols from the reaction of alkynes with isolated
cobalt(I) vinylketene complexes, which were prepared
from cyclobutenones, having made the observation that
a methyl group in position 5 severely compromised the
generality of the reaction.6 Gibson (née Thomas)
reported the addition reactions of 3-alkyl-5-phenyl-1-
oxa-1,2,4-pentatriene iron(0) complexes with alkynes,
which produced g3-allyl-g1-vinylacyl iron derivatives
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through insertion of the alkyne into the acyl iron bond.
These isolable complexes were then converted to phe-
nols, furan derivatives, or cyclopentenediones. With
electron rich alkynes phenols were obtained directly
without isolation of the intermediate complex.7

We report herein our preliminary findings during the
exploration of the significant potential of 2-alkoxyvinyl-
ketenes as formal equivalents to dienes upon reaction
with alkynes to form substituted catechol8 or o-quinone
derivatives. Although vinylketene complexes bearing an
oxygen substituent at C-2 can be accessed through sev-
eral complementary approaches, reports of their reac-
tions with alkynes are non-existent. In our studies, the
complexes were synthesized via vinyllithium reagents
that were prepared from vinyl bromides by established
methods.9 Reaction of the lithium reagents with iron
pentacarbonyl produced the tetracarbonyl iron acylates
analogous to those prepared from vinyllithium com-
pounds derived from vinyltin reagents,10 or via reaction
of tetracarbonyl ferrates with a,b-unsaturated acyl
halides.11 Addition of triethyloxonium tetrafluoroborate
(Meerwein�s salt) in the presence of HMPA provided
the vinylketene complexes in moderate yield.12–14

In the reactions of vinylketene iron complexes with alky-
nes that were reported by Gibson, steric effects played
an important role that was sometimes balanced by elec-
tronic influences. Consistent with this was our observa-
tion that the reaction of 3-ethoxy-5-phenyl-1-oxa-1,2,4-
pentatrienone, 1, and dimethyl acetylene dicarboxylate
produced the g3-allyl-g1-acyl iron complex in 27% yield
after 0.5 h in refluxing THF (Scheme 2).12 Continued
heating resulted in non-specific decomposition. We
believed that readily available 3-ethoxy-4-phenyl-1-
oxa-1,2,4-pentatriene, 2,15 would suffer no steric encum-
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Scheme 2. Addition reaction of dimethylacetylene dicarboxylate with vinylk

Table 1. Catechol synthesis from reaction of vinylketene complex,2, with al

O
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Fe(CO)3
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+
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reflux 2

3

Entry R1 R2

1 H OEt
2 H COOMe
3 Me COOMe
4 Me COOEt
5 Et COMe
6 COOMe COOMe

aReaction conditions: vinylketene complex, 2 (0.5–2.0 mmol) alkyne (7–20 m
brance, at position 5, to reductive elimination of the allyl
acyl complex to provide the phenol and was gratified to
find that mild conditions were sufficient to obtain mod-
erate yields of phenols from reactions with alkynes. The
results of our efforts at exploring the scope of the benz-
annulation process are summarized in Table 1.16

In our hands, regioselectivities were often good, but
were sensitive to minor structural differences. The results
of successful benzannulations are summarized in Table
1. The reaction proceeds readily in refluxing tetrahydro-
furan (THF) over 24–48 h. Toluene proved to be a poor
solvent for this system, leading to reduced yields and
complicated mixtures. The major by-products were the
alkyne trimers, both symmetrical and unsymmetrical,
which were detected as impurities in NMR spectra and
GC–MS of crude samples. Analysis of crude NMR spec-
tra also indicated the formation of intermediates such as
those described by Gibson, which are readily detected by
the diasteropicity of CH2 protons (ABX3 patterns
around 4 and 1.2 ppm). In our studies, we were unable
to isolate the g3-allyl-g1-vinylacyl iron complexes in
analytically pure form. Esters, a ketone, and an acetyl-
enic ether all provided catechol monoethyl ethers.

The electron rich alkyne, ethyl ethynyl ether provided
the phenol with the ethoxy group of the alkyne incorpo-
rated distal to the phenol group as indicated by the meta
coupling constant (J = 3.2 Hz) exhibited by the aro-
matic protons of the new benzene ring. The regioselec-
tivity of incorporation of the alkyne appears to be
under electronic control. With electron deficient unsym-
metrical alkynes, steric effects exert a moderate to strong
preference for the installation of the more hindered
group ortho to the phenolic hydroxyl group. For exam-
ple, methyl propiolate provided the catechol that
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4-48 h

4 5

Yield (%) Regioisomeric ratio 4:5

35 0:100 (5a)
44 100:trace (4b)
67 64:36 (4c, 5c)
92 30:70 (4d, 5d)
54 43:57 (4e)
65 (4f)

mol) in THF: (5–20 mL). Reaction time: reflux 24–48 h.
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resulted from incorporation of the ester group in the
proximal position to the phenol as manifested by the
presence of a peak in the 1H NMR at 10.92 ppm. With
butynoates and 3-hexyn-2-one the regioselectivity is
small and appears to be the result of a delicate balance
between steric and electronic factors. The yields of phe-
nols represent purified material and were not determined
by direct analysis of the crude product mixtures, which
exhibited poorly resolved NMR spectra.

Those alkynes, which failed to produce isolable
quantities of phenol included hexyne, phenylacetylene,
trimethylsilylacetylene, bis-trimethylsilylacetylene, hexa-
fluorobutyne, and cyclopropylacetylene.14 In these
cases, complex mixtures were obtained, the alkyne tri-
mers were detected by GC–MS and were the major
products observed. Detectable quantities of compounds
with the molecular weight expected for the phenols were
observed in the GC–MS, however efforts to isolate the
purified compounds were unsuccessful. It is conceivable
that g3-allyl-g1-vinylacyl compounds were formed and
converted to the desired phenols on the injection block
of the GC.

We have discovered that reducing the steric congestion
at atom 5 of the oxapentatriene (C-4 of the vinylketene)
iron complexes, and activation by substitution with
an ethoxy group at atom 3 of the oxapentatriene
allows for the synthesis of highly substituted catechol
monoethers suitable for elaboration to more complex
compounds. Acetylenic ketones, esters, and ethers
were all converted to catechols upon reaction with 2.
We are actively exploring improved conditions
for the practical development of these reactions
through which highly complex aromatic compounds
may be synthesized from simple non-aromatic
precursors.16
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1-ethoxyethyne: Spectral and analytical data for (2,5-
diethoxybiphenyl-3-ol), 5a (yellow oil). Yield: 35%. 1H
NMR (400 MHz, d6-benzene) d 7.65 (2H, d, J = 8 Hz,
aryl), 7.21 (2H, t, J = 8 Hz, aryl), 7.12 (1H, t, J = 7.9 Hz,
aryl), 6.81 (1H, d, J = 3.2 Hz, CH), 6.60 (1H, d, J = 3 Hz,
CH), 6.05 (1H, s, OH), 3.56 (2H, q, J = 6.8 Hz, CH2CH3),
3.31 (2H, q, J = 6.8 Hz, CH2CH3), 1.08 (3H, t, J = 6.8 Hz,
CH3), 0.72 (3H, t, J = 6.8 Hz, CH3).

13C NMR (100 MHz,
d6-benzene) d: 156.5, 151.0, 138.9, 137.4, 135.1, 129.1,
128.6, 127.6, 108.0, 101.1, 69.1, 63.4, 15.1, 14.7. IR (cm�1)
3507 (vbr, O–H), 2978 (s, C@C), 2930 (w, C@C): GC–MS
m/z 258 (M+, 78), 229 (88), 201 (100), 183 (20), 171 (9),
155 (14), 127 (10), 115 (12), 69 (11). Methyl propynoate:
Spectral and analytical data for (2-ethoxy-3-hydroxybi-
phenyl-4-carboxylic acid methyl ester), 4b (yellow oil).
Yield: 44%. 1H NMR (400 MHz, CDCl3): d 10.92 (1H, s,
OH), 7.56 (2H, d, J = 8.0 Hz, aryl), 7.53 (1H, d,
J = 6.8 Hz, aryl), 7.37 (2H, t, J = 7.6 Hz, aryl), 7.30 (1H,
t, J = 7.2 Hz, aryl), 6.82 (1H, d, J = 8.8 Hz, aryl), 3.91
(3H, s, OCH3), 3.76 (2H, q, J = 6.4 Hz, CH2CH3), 1.07
(3H, t, J = 6.4 Hz, CH3).

13C NMR (100 MHz, CDCl3): d
170.9, 156.2, 141.9, 137.7, 130.2, 129.4, 128.5, 128.1, 124.6,
120.3, 121.5, 68.9, 52.4, 15.7. IR (cm�1) (w, OH), 2960 (w,
C@C), 2800 (C–C), 1794 (w, C@O): MS m/z 272 (M+, 93),
239 (100), 225 (15), 211 (75), 197 (29), 184 (43), 168 (11)
155 (25), 139 (11), 127 (29), 53 (16). Methyl butynoate:
Spectral and analytical data for (2-ethoxy-3-hydroxy-5-
methyl-biphenyl-4-carboxylic acid methyl ester), 4c (yel-
low oil). Yield: 43%. 1H NMR (400 MHz, d6-benzene): d
12.06 (1H, s, OH), 7.67 (2H, dd, J = 8 Hz, aryl), 7.242
(2H, t, J = 7.2 Hz, aryl), 7.17 (1H, t, J = 7.2 Hz, aryl),
6.68 (1H, s, CH), 3.94 (2H, q, J = 8.0 Hz, OCH2CH3),
3.26 (3H, s, OCH3), 2.34 (3H, s, CH3), 1.10 (3H, t,
J = 7.2 Hz, OCH2CH3).

13C NMR (100 MHz, d6-benz-
ene): d 172.3, 157.9, 140.3, 138.2, 135.1, 129.6, 129.2,
128.1, 123.6, 112.4, 68.4, 51.4, 30.0, 23.6, 15.6. IR (cm�1)
3400 (w, OH), 2927 (s, C@C) 1731 (w, C@O): MS m/z 286
(M+, 57), 253 (100) 239 (26), 225 (55), 211 (23), 197 (48),
141 (22), 115 (16), 67 (17). Spectral and analytical data for
(6-ethoxy-5-hydroxy-4-methylbiphenyl-3-carboxylic acid
methyl ester), 5c (yellow oil). Yield: 24%. 1H NMR
(400 MHz, CDCl3): d 7.50 (2H, dd, J = 7.2 Hz, aryl), 7.41
(s, 1H, aryl), 7.35 (2H, t, J = 8.0 Hz, aryl), 7.28 (1H, t,
J = 7.6 Hz, aryl), 6.17 (1H, s, OH), 3.80 (3H, s, OCH3),
3.52 (2H, q, J = 6.4 Hz, OCH2CH3), 2.46 (3H, s, CH3),
1.08 (3H, t, J = 6.8 Hz, OCH2CH3).

13C NMR (100 MHz,
d6-benzene): d 167.4, 148.7, 145.7, 138.1, 130.9, 128.8,
128.6, 126.9, 126.5, 124.5, 124.4, 69.0, 51.3, 15.0, 13.4. IR
(cm�1) 3503 (br, OH), 2951 (w, C@C), 1719 (s, C@O): MS
m/z 286 (M+, 100), 258 (31), 227 (56), 198 (50), 141 (19),
115 (14). Ethyl butynoate: Spectral and analytical data for
(2-ethoxy-3-hydroxy-5-methylbiphenyl-4-carboxylic acid
ethyl ester), 4d (red-brown oil). Yield: 28%. 1H NMR
(500 MHz, CDCl3): d 11.48 (1H, s, OH), 7.54 (2H, d, J =
9.0 Hz, aryl), 7.37 (2H, t, J = 9.0 Hz, aryl) 7.31 (1H, t,
J = 9.0 Hz, aryl), 6.66 (1H, s, CH), 4.39 (2H, q,
J = 9.0 Hz, O2CH2CH3), 3.71 (2H, q, J = 9.0 Hz,
OCH2CH3), 2.48 (3H, s, CH3), 1.38 (3H, t, J = 9.0 Hz,
OCH2CH3), 1.06 (3H, t, J = 9.5 Hz, O2CH2CH3).
13C

NMR (125 MHz, CDCl3): d 171.9 157.1, 140.0, 137.7,
135.7, 129.4, 128.3, 127.9, 123.7, 112.5, 68.8, 61.9, 29.9,
24.1, 15.7, 14.4. IR 2929 (br, C@CH), 1733 (C@O): MS
m/z 300 (M+, 83), 272 (9), 253 (100), 239 (26), 226 (60),
211 (23), 197 (49), 141 (29), 115 (23), 67 (18). Spectral and
analytical data for (6-ethoxy-5-hydroxy-4-methylbiphenyl-
3-carboxylic acid ethyl ester), 5d (red-brown oil). Yield:
64%. 1H NMR (500 MHz, CDCl3): d 7.58 (2H, d, J =
8.0 Hz, aryl,), 7.46 (1H, s, CH), 7.44 (2H, t, J = 8.0 Hz,
aryl),7.36 (1H, t, J = 7.0, aryl), 6.23 (1H, s, OH), 4.35 (2H,
q, J = 7.2 Hz, O2CH2CH3), 3.59 (2H, q, J = 6.8 Hz,
OCH2CH3), 2.53 (3H, s, CH3), 1.38 (3H, t, J = 7.2 Hz,
OCH2CH3), 1.156 (3H, t, J = 6.8 Hz, O2CH2CH3).

13C
NMR (125 MHz, CDCl3): d 167.8, 148.3, 137.8, 130.9,
128.8, 128.7, 127.8, 127.0, 125.8, 124.0, 123.9, 69.4, 61.0,
12.7, 14.6, 3.3. IR (cm�1) 3507 (br, OH), 2979 (C@CH),
2934 (C–C), 1716 (s, C@O): MS m/z 300 (M+, 100), 272
(23), 255 (23), 255 (29), 243 (17), 226 (48), 199 (28), 181
(14), 115 (14). 3-Hexyn-2-one: Spectral and analytical data
for {1-(2-ethoxy-5-ethyl-3-hydroxybiphenyl-4-yl)-etha-
none}, 4e (yellow crystalline solid). Yield: 23%. 1H
NMR (400 MHz, CDCl3): d 7.56 (2H, d, J = 8 Hz, aryl
CH), 7.45 (2H, t, J = 7.4 Hz, aryl CH), 7.31 (t, 1H,
J = 7.4 Hz, aryl), 7.10 (1H, s, PhH), 6.19 (1H, s, OH), 3.59
(2H, q, J = 7.2 Hz, OCH2CH3), 2.83 (2H, q, J = 7.2 Hz,
CH2CH3), 2.57 (3H, s, COCH3), 1.24 (3H, t, J = 7.2 Hz,
OCH2CH3), 1.16 (3H, t, J = 7.2 Hz, CH2CH3).

13C NMR
(100 MHz, CDCl3): d 201.6, 148.0, 145.1, 137.5, 134.8,
130.6, 130.0, 128.6, 127.6, 122.5, 122.6, 69.3, 30.0, 20.3,
15.5, 14.4. IR (cm�1) 3358 (vbr, OH), 2966 (w, C@C),
2934 (w, C–C), 1678 (vs, C@O). MS m/z 284 (M+, 100),
269 (26), 255 (60), 241 (68), 223 (15), 165 (20), 152 (12).
Spectral and analytical data for {1-(6-ethoxy-4-ethyl-5-
hydroxybiphenyl-3-yl)-ethanone}, 5e (yellow crystalline
solid). Yield: 31%. 1H NMR (400 MHz, CDCl3): d 7.77
(1H, s, PhH), 7.58 (1H, d, J = 7.2 Hz, aryl H(ortho)),
7.44 (2H, t, J = 7.2 Hz, aryl H(meta)), 7.38 (1H, t,
J = 7.2 Hz, aryl(para)), 6.77 (1H, s, OH), 3.61 (2H, q,
J = 7.2 Hz, OCH2CH3), 2.71 (2H, q, CH2CH3), 2.65 (3H,
s, CH3), 1.24 (3H, t, J = 7.2 Hz, OCH2CH3), 1.14 (3H, t,
J = 7.2 Hz, CH2CH3).

13C NMR (100 MHz, CDCl3): d
204.8, 149.3, 141.8, 138.4, 137.8, 136.5, 128.6, 128.0, 125.7,
122.4, 69.3, 32.6, 29.9, 26.9, 16.4, 15.7. IR (cm�1) 3375 (br,
OH), 2975 (w, C@C), 2929 (vw, C–C), 1691 (vs, C@O).
MS m/z 284 (M+, 73), 269 (59), 241 (100), 165 (10), 152
(8), 128 (6). Dimethyl acetylene dicarboxylate: Spectral and
analytical data for (6-ethoxy-5-hydroxybiphenyl-3,4-dicar-
boxylic acid dimethyl ester), 4f (yellow oil). Yield: 65%. 1H
NMR (300 MHz, CDCl3) d 9.75 (1H, s, OH) 7.54 (1H, dd,
J = 7.8; 1.7 Hz, aryl C–H), 7.39 (3H, m, J = 7.5 Hz;
1.8 Hz, aryl C–H), 7.13 (s, aryl C–H), 3.93 (3H, s, OCH3),
3.86 (3H, s, OCH3), 3.78 (2H, q, J = 7.1 Hz, CH2), 1.12
(3H, t, J = 7.1 Hz, CH3).

13C NMR (75 MHz, CDCl3) d
167.8, 167.0, 153.5, 146.6, 138.9, 136.6, 129.0, 128.3, 121.6,
69.1, 52.9, 52.6, 15.4. IR (cm�1) 3500 (w, OH), 2980 (w,
C@C), 1720 (w, C@O), 1435 (w, O–C). MS m/z 330 (15,
M+), 283 (40), 196 (45), 126 (35), 77 (15).
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